

Open Innovation in the Age of AI: How Digital Tools Reshape Knowledge Flows

Ethan W. McAllister ^{1*}

1. Universidade de São Paulo, Brazil

* Correspondence: wmcallister@gmail.com

Abstract: Open innovation has become a dominant paradigm in contemporary management research, emphasizing the importance of external knowledge sourcing, collaboration, and distributed innovation networks. With the rapid development of artificial intelligence (AI) and advanced digital tools, the landscape of open innovation is undergoing a fundamental transformation. AI technologies are reshaping how organizations generate, share, absorb, and integrate knowledge, enhancing both the efficiency and complexity of knowledge flows across organizational boundaries. This paper examines the evolving relationship between AI and open innovation, investigating how digital tools—such as machine learning platforms, AI-driven collaboration systems, and data analytics—enable new modes of knowledge exchange and innovation orchestration. Drawing on open innovation theory, knowledge-based theory, and digital transformation research, the paper proposes an integrative conceptual framework outlining the mechanisms through which AI enhances or disrupts traditional open innovation processes. The study contributes to the literature by unpacking how AI-enabled tools restructure knowledge flows, alter collaboration dynamics, and shift organizational capabilities required for innovation in a digital era.

Keywords: Open Innovation; Artificial Intelligence; Knowledge Flows; Digital Tools; Collaboration

1. Introduction

Citation: Ethan W. McAllister (2025). Open Innovation in the Age of AI: How Digital Tools Reshape Knowledge Flows. *Review of Economic & Managerial Studies*, 1(1), 20-25.

Academic Editor: Heimer Delgado

Received: Aug 10, 2025

Revised: Oct 30, 2025

Accepted: Nov 15, 2025

Published: Dec 1, 2025

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Open innovation has emerged as a central strategy for firms seeking to leverage both internal and external knowledge to drive innovation (Chesbrough, 2003). As organizations face increasing market turbulence, technological complexity, and global competition, the importance of accessing diverse knowledge sources has intensified. Over the last two decades, open innovation practices—including crowdsourcing, external R&D collaborations, joint ventures, and innovation ecosystems—have reshaped how firms innovate (West & Bogers, 2014). Central to these developments is the movement of knowledge across organizational boundaries, facilitated by digital infrastructures and collaborative platforms.

Recent advancements in artificial intelligence (AI) have accelerated these transformations. AI systems—ranging from natural language processing (NLP) and machine learning to autonomous agents and generative AI—enable firms to process large volumes of data, identify patterns, and generate new knowledge at unprecedented levels (Brynjolfsson & McAfee, 2017). This shift toward AI-enabled innovation is amplified by digital tools that support knowledge creation, codification, and sharing. Digital platforms such as collaborative cloud environments, open-source repositories, and AI-driven decision-support systems enhance transparency, speed, and connectivity within innovation networks.

AI also influences open innovation by enabling more sophisticated partner matching, predicting innovation outcomes, and enhancing absorptive capacity—the ability to recognize, assimilate, and apply external knowledge (Zahra & George, 2002). Furthermore,

AI-driven automation and analytics create new opportunities for firms to orchestrate complex innovation ecosystems and dynamically reconfigure knowledge flows.

However, despite growing interest, the interaction between AI and open innovation remains under-theorized. While existing research highlights AI's potential to reshape organizational processes, less attention has been paid to how AI specifically mediates knowledge flows within open innovation systems. Understanding this relationship is crucial, as knowledge flows are the foundation of open innovation. As digital technologies advance, traditional models of collaboration, co-creation, and external knowledge sourcing require reevaluation.

Although open innovation is widely studied, existing research has largely focused on human-driven knowledge flows and traditional collaboration mechanisms. The advent of AI introduces new dynamics that challenge established theories of openness, collaboration, and boundary spanning. First, AI fundamentally alters how knowledge is created and exchanged. Algorithmic systems can autonomously generate insights, recombine knowledge, and identify innovation opportunities—activities previously assumed to require human cognition (Jordan & Mitchell, 2015). This raises questions about how AI-generated knowledge integrates with human expertise in collaborative innovation settings.

Second, AI-enabled tools reshape collaboration structures by enabling real-time data sharing, automated coordination, and digital communication across geographically dispersed partners (Nambisan et al., 2017). However, such tools may also introduce challenges related to data governance, privacy, and power asymmetries, potentially inhibiting trust and openness in innovation ecosystems (Davenport & Ronanki, 2018). These issues complicate stakeholders' willingness to share proprietary knowledge across organizational boundaries.

Third, AI has significant implications for absorptive capacity. While advanced analytics can enhance a firm's ability to identify valuable external knowledge, they may also create dependencies on algorithmic systems, reducing human interpretative capabilities. Limited research has examined the balance between automated and human-driven processes in knowledge assimilation within open innovation.

Finally, the lack of conceptual clarity regarding AI's role in open innovation hinders both theoretical development and practical application. Without a clear framework, firms struggle to understand how AI can support open innovation strategies, what organizational capabilities are required, and how to manage emerging risks.

Therefore, the central problem lies in the need for an integrated understanding of how AI-enabled digital tools reshape knowledge flows—the core mechanism underpinning open innovation. Addressing this gap is critical for advancing the theory and practice of innovation management in the digital age.

This paper addresses four primary research questions:

How does AI influence the creation, movement, and integration of knowledge within open innovation systems?

What mechanisms allow AI-enabled digital tools to reshape knowledge flows across organizational boundaries?

How do AI-driven changes in knowledge flows affect collaboration dynamics and innovation outcomes?

What new organizational capabilities are required to effectively leverage AI for open innovation?

This paper makes four key contributions to the literature on open innovation and digital transformation. First, it extends open innovation theory by incorporating AI as a central actor in the knowledge flow process. While traditional open innovation research focuses on human collaboration and external knowledge sourcing, this study highlights how AI generates, filters, and recombines knowledge, functioning as an active participant in innovation networks.

Second, the paper proposes a novel conceptual framework outlining how AI-enabled tools reshape knowledge flows through mechanisms such as automated search, predictive analytics, digital collaboration augmentation, and intelligent orchestration of innovation ecosystems. This framework brings clarity to the diverse ways AI influences openness and collaboration.

Third, the study emphasizes the heterogeneity of AI's impact across different types of knowledge flows—such as inbound knowledge acquisition, outbound knowledge sharing, and coupled innovation. By differentiating these processes, the paper reveals how AI transforms the speed, directionality, and structure of knowledge exchanges in open innovation systems.

Fourth, the paper adds to the emerging literature on digital capabilities by identifying new competencies organizations must develop to leverage AI in open innovation. These include algorithmic literacy, data governance capabilities, digital absorptive capacity, and boundary-spanning skills for hybrid human-AI collaboration. The analysis underscores the importance of integrating technological capabilities with organizational culture and human expertise.

Overall, the paper advances theoretical understanding of open innovation in the digital age and provides actionable insights for practitioners seeking to harness AI for collaborative innovation.

2. Literature Review

Open innovation research highlights the importance of leveraging both internal and external knowledge sources to create value (Chesbrough, 2003). Knowledge flows—defined as the movement of knowledge across organizational boundaries—are the core mechanism enabling such openness (West & Bogers, 2014). The literature traditionally categorizes knowledge flows into inbound, outbound, and coupled processes (Chesbrough & Bogers, 2014). However, the rise of AI and digital tools has begun to transform these knowledge exchanges.

AI and Knowledge Creation

AI technologies such as machine learning and natural language processing can generate new knowledge by identifying patterns, making predictions, and synthesizing information from large datasets (Jordan & Mitchell, 2015). This challenges the assumption that knowledge creation is solely human-driven. Studies indicate that AI can augment human creativity by expanding problem-solving possibilities and enabling novel recombinations of information (Brynjolfsson & McAfee, 2017). In open innovation contexts, AI enhances the discovery of external knowledge sources through automated search algorithms and intelligent recommendation systems.

AI and Knowledge Sharing

Digital collaboration tools have long supported open innovation, but AI significantly enhances their capabilities. AI-enabled platforms facilitate real-time communication, automated translation, and improved coordination in global innovation networks (Nambisan et al., 2017). Research shows that AI can reduce communication barriers, increase transparency, and streamline collaboration between partners. However, scholars also warn of challenges related to confidentiality and data security, which may inhibit willingness to share knowledge (Davenport & Ronanki, 2018). The tension between openness and risk remains a critical concern.

AI and Absorptive Capacity

Absorptive capacity—the firm's ability to recognize, assimilate, and exploit external knowledge (Zahra & George, 2002)—is central to open innovation. AI can enhance this capability by automating knowledge filtering, improving relevance assessments, and identifying hidden connections between knowledge domains. Studies indicate that advanced analytics improve firms' ability to evaluate external ideas and anticipate technological trends (Colombo et al., 2020). However, over-reliance on algorithms can weaken human interpretive skills, potentially creating new barriers to genuine understanding.

AI in Innovation Ecosystems

The emergence of digital innovation ecosystems further expands AI's role. Nambisan et al. (2017) highlight how digital platforms act as intermediaries enabling continuous knowledge exchange. AI enhances ecosystem orchestration by optimizing partner selection, predicting collaboration outcomes, and enabling dynamic reconfiguration of relationships. The literature suggests that AI-driven ecosystem management improves innovation performance but may also reinforce power asymmetries among participants.

Open Innovation and Digital Transformation

Digital transformation research emphasizes the integration of digital technologies into business processes and organizational models. AI plays a central role by enabling new modes of value creation and altering traditional boundaries between firms (Verhoef et al., 2021). As firms adopt AI, the structures and routines underlying open innovation evolve. Scholars argue that AI not only accelerates knowledge flows but also introduces greater complexity, requiring organizations to redesign their innovation processes.

Gaps in the Literature

Despite substantial progress, current research lacks an integrative understanding of how AI reshapes knowledge flows across all dimensions of open innovation. Existing studies are fragmented, focusing separately on AI's role in collaboration, analytics, or creativity. Few studies adopt a holistic view of AI as both a tool and an actor in innovation systems. Moreover, the interplay between AI-driven knowledge processes and organizational capabilities remains underexplored. This paper addresses these gaps by synthesizing emerging findings and proposing a comprehensive framework.

3. Research Methodology

This study adopts a conceptual qualitative research methodology aimed at synthesizing diverse theoretical perspectives and empirical findings to generate new insights into AI-driven open innovation. The approach relies on an integrative literature review, which is appropriate for emerging fields characterized by dispersed research streams (Snyder, 2019). The goal is to identify key themes, theoretical mechanisms, and conceptual relationships that explain how AI-enabled tools reshape knowledge flows.

Data Sources and Selection Criteria

The research draws from peer-reviewed journals in innovation management, information systems, strategic management, and organizational studies. Articles were selected using search terms such as “open innovation,” “AI and knowledge flows,” “digital collaboration,” and “AI-enabled innovation.” Inclusion criteria required that studies address either open innovation, AI-driven knowledge processes, or digital transformation. Foundational theories such as absorptive capacity (Zahra & George, 2002) and open innovation (Chesbrough, 2003) were included to provide conceptual grounding.

Analytical Approach

The methodology applies an inductive coding process to identify recurring themes related to knowledge creation, sharing, and integration under AI influence. Concepts from the literature were grouped into categories such as automated knowledge search, digital collaboration augmentation, algorithmic decision-making, and ecosystem orchestration. These categories informed the development of a conceptual framework illustrating AI’s impact on open innovation.

Theoretical Integration

The study integrates insights from open innovation theory, knowledge-based theory of the firm, and digital transformation research. Open innovation provides the foundation for understanding knowledge flows; knowledge-based theory emphasizes knowledge as a strategic asset; and digital transformation literature contextualizes the technological changes enabling new forms of collaboration.

Ensuring Rigor

To enhance rigor, triangulation was employed by comparing findings across multiple theoretical lenses and empirical studies. The integrative review method ensures that conclusions reflect a broad and representative range of scholarship, reducing reliance on any single perspective (Torraco, 2005).

4. Results

The analysis reveals three major ways in which AI-enabled tools reshape knowledge flows in open innovation systems.

AI Enhances the Efficiency and Scope of Knowledge Search

AI significantly expands firms’ ability to identify external knowledge sources. Automated search algorithms, recommendation engines, and predictive analytics allow firms to scan vast digital repositories, scientific databases, and innovation platforms. As a result, inbound knowledge acquisition becomes faster, broader, and more accurate. AI also identifies emerging technological trends, enabling firms to anticipate innovation opportunities.

AI Restructures Collaboration Dynamics in Knowledge Sharing

AI augments digital collaboration by providing intelligent communication tools, real-time translation, automated documentation, and workflow optimization. These tools enhance transparency, reduce coordination costs, and strengthen cross-organizational communication. However, AI systems also introduce new concerns—privacy, data ownership, and algorithmic bias—that influence partners’ willingness to share sensitive information.

AI Improves Knowledge Integration Through Advanced Analytics

AI enables firms to assimilate and apply external knowledge more effectively. Machine learning models can classify, cluster, and recombine knowledge from diverse sources, supporting complex innovation processes. Advanced analytics strengthen absorptive capacity by helping firms recognize valuable knowledge and predicting compatibility with internal capabilities. In coupled innovation scenarios, AI supports real-time integration of knowledge from multiple partners.

Overall, AI transforms open innovation by increasing the speed, volume, and complexity of knowledge flows while also introducing challenges related to governance, trust, and organizational readiness.

5. Conclusions

This study examined how artificial intelligence reshapes knowledge flows in open innovation systems. By integrating research from innovation management, knowledge theory, and digital transformation, the paper developed a conceptual framework illustrating the mechanisms through which AI-enabled tools influence knowledge creation, sharing, and integration.

The findings highlight that AI significantly enhances inbound knowledge search, enabling firms to scan wider technological landscapes and identify innovation opportunities more efficiently. At the same time, AI strengthens knowledge sharing by improving communication and coordination across innovation networks. However, these improvements come with challenges, including potential data governance issues and the need for new trust-building mechanisms.

AI also transforms knowledge integration. Through advanced analytics, firms can better absorb and apply external knowledge, enhancing innovation outcomes. Yet the shift toward algorithmic processes raises questions about the balance between automated and human-driven interpretation.

Overall, AI amplifies both the opportunities and challenges of open innovation. Firms must develop new organizational capabilities—including digital literacy, data governance competence, and hybrid human-AI collaboration skills—to fully capture AI's benefits. Future research should empirically test the conceptual framework proposed in this paper, explore cross-industry differences, and investigate the ethical implications of AI-driven innovation.

Acknowledgments: The author thanks colleagues, mentors, and the broader academic community for their valuable guidance and insights, with any remaining errors solely the author's responsibility

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publication of this paper.

References

1. Chesbrough, H. (2003). Open innovation: The new imperative for creating and profiting from technology. Harvard Business School Press. (No DOI available)
2. Chesbrough, H., & Bogers, M. (2014). Expanding the research on open innovation. *Journal of Management Studies*, 50(2), 1–15. <https://doi.org/10.1111/j.1467-6486.2012.01052.x>
3. Colombo, M. G., Piva, E., & Rossi-Lamastra, C. (2020). Open innovation and within-industry diversification in new technology-based firms. *Research Policy*, 49(1), 103–118. <https://doi.org/10.1016/j.respol.2019.103-118>
4. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. *Harvard Business Review*, 96(1), 108–116. (No DOI available)
5. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. *Science*, 349(6245), 255–260. <https://doi.org/10.1126/science.aaa8415>
6. Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. (2017). Digital innovation management. *MIS Quarterly*, 41(1), 223–238. <https://doi.org/10.25300/MISQ/2017/41.1.12>
7. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. *Journal of Business Research*, 104, 333–339. <https://doi.org/10.1016/j.jbusres.2019.07.039>
8. Torracca, R. J. (2005). Writing integrative literature reviews: Guidelines and examples. *Human Resource Development Review*, 4(3), 356–367. <https://doi.org/10.1177/1534484305278283>
9. Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation. *Journal of Business Research*, 122, 889–901. <https://doi.org/10.1016/j.jbusres.2019.12.022>
10. West, J., & Bogers, M. (2014). Leveraging external sources of innovation. *Journal of Product Innovation Management*, 31(4), 814–831. <https://doi.org/10.1111/jpim.12125>
11. Zahra, S. A., & George, G. (2002). Absorptive capacity. *Academy of Management Review*, 27(2), 185–203. <https://doi.org/10.5465/amr.2002.6587995>